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This paper establishes the distribution of luminous radiation from a point
source located in a écattering medium. It is assumed that the scattering
is isotropic: that is that any element of the medium emits radiation in
all directions with equal intensity. This problem was first considered

in a paper by Ambartsumian [ 1 1. Some problems of a similar type have

been considered in connection with the diffusion of neutrons (see, for
example, [2 1),

1. A number of quantities are determined in this article which have
interest in connection with radiation from a point source. Thus a quantity
B exists, equal to the radiation absorbed in unit volume, and also the
intensity of radiation arriving at a given point from a given direction,
which pemits the determination of the intensity of the halo around a
point source. Further, the total quantity of luminous radiation falling
on the unit area from the source, is determined.

We first give the solution of the auxiliary one-dimensional problem
(depending on the coordinate z) of the distribution in space of radiation
from a specified layer, which consists of point sources, and which co-
incides with the plane xoy. In this connection it is assumed that the
layer is transparent in relation to radiation being propagated from one
hal f-space into the other. The original integral equation can be obtained
on the basis of the equation of ray propagation (see [3]). In the present
case, however, in view of the fact that the radiation is isotropic, the
equation can be derived by a simpler method.

Suppose a certain elementary volume is the source of illumination in
which the emission is isotropic; that is, with equal intensity in all
directions. In such case, the intensity of the radiation at a distance R
from the source will be [ 3]
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Here k is the coefficient of absorption characteristic of the given
medium. The quantity e characterizes the strength of the source; it may
be measured, for example, in heat units.

The quantity of radiation absorbed by an elementary volume dV, as can
easily be shown (see [31]1), will be

Here J is the intensity of the radiation falling on the given element
in a given direction.

The total quantity of radiation absorbed in this case will be

BdV:kSSJdeV (3)

Here the integration is carried out over the whole solid angle. Since
the volume absorbing radiation is itself a source, that is radiates some

part of whatever reaches it, the intensity of the illumination from the
element will be

Jy= 2B av (4)

4drft®

Here o is the ratio of the quantity of light scattered to that ab-
sorbed.

On the basis of the relations (1), (2), (3), and (4), the fundamental
integral equation can be derived for the current function B.

We define the radiation which comes from a layer with coordinate { and
is absorbed by the element A, which is located for convenience at the
origin of coordinates by:

B — SkB(. . exp[ka’-’+y2—|—(z—C)2]
dB (z) = skB (%) dt _S,,_Sm G e dw dy (5)
We transform the double integral introduced in equation (5). For this
purpose, we introduce the following substitutions

:—L=t Va22+y=r, VP+E=s ks=9, hki=1 k=0
In this case

T 0 expl—dVIF @I G=2R) 0 T empl—kVaTyEra
S S dm (2P 4y + (2 1)) dz dy ”'S g 4m (2% + y* + &)

-0 —00 —& —00

dzdy =
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Here Fi (a) 1s the integral-exponential function determined by the
following expression

& —t
. e
Ei(2) = S ¢ dt
On the basis of this relation, equation (5) takes the form
dB (z) = — 5 kdCEi(— |t —0]) = — 5 doEi(— |t —0]) (7)

Proceeding in an analogous manner, we get the radiation from the layer
of point sources located in the plane xoy

By(z) = —¢ = Ei (—kz|) (8)

Here ¢ is a coefficient related to the density of the distributed
sources,

Since the element A receives radiation from all layers of material in
space, and also from the layer of sources distributed on the plane xoy,
the integral equation for determining B(z) will have the following form:

k . 7 <.
B()= —e4Ei(—|<])— o | B@Ei(—|t—0|)do 9)
—co

2. We develop the solution of equation (9). For this purpose we intro-

duce into consideration the functions

G () :7}7_”_ % Ei(— it|)eimde (10)
Fu) = Viﬁ_ SB(T)eiwdf (11)

Multiplying both parts of equation (9) by e’ and integrating in the
limits from — o« to + , 'we obtain
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F(u):T,% g [—e%Ei(-—-hl)—% S B () Ei (—|< —w|) do|ei™ dr

00 —0

Introducing the variable t, such that r = t +  we obtain
(-] -]
k c 1 ; .
Fuy=—e5Gu) — 5= B (0) et dw S Ei(—|t]|)etudt
or Viz —Seo 2

F@)= ——elzc—G(u)— %VﬂG(u)F (u)
From this, finally, we obtain

_ — 1,k G (u) 12
F(u)_i+1/gcv2;rG(u) (12)

We determine the function G(u). Taking advantage of the symmetry pro-
perties of the integrand, we have

- -]

1 . - .
G(u) = Ve -S”Ex(-—h])(cos-ru+zsmtu)dr—
17 2 o _
=5 _S”El(——|-:|)cosmdt— V_?-?_§ Ei(—|<|)costudt =
- V?_S Ei (— ) cos tu de (13)
“0

Or finally, after integrating by parts,

G (u)

§°Ei(— |t])eiudr = V%?Ei(——r)cosrudr =

0

T Vi
. 0
=—‘/—2——}arctgu (14)

Using the inverse Fourier transformation, and allowing for the sym-
metry properties of the integrand, for the function B(r) we obtain
% , o
- \ F(u)eivvdu — —,Z——S F (u) cosudu
. V 2=

—m t

1
V iz

B (z) =

Using euqations (12) and (14) for F(u) and G(u), and setting r = kz,
we finally obtain

on

B(ry=c¢ % é S _aretgy oos kou du (15)

1l —ou-tmclgn

O
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3. We now set up the relation between the solution for the one-
dimensional problem, and the spherically symmetrical problem. For the
case of a point source, let the quantity of radiation absorbed per unit
volume, at a distance r from the source, be represented by the function
é(z). In this case the function B(z), giving the same quantity for the
one-dimensional problem, may be used by means of a summation of the solu-
tions corresponding to different sources; that is, by means of an inte-
gration of the spherically symmetrical solution

o oo

B(z) = 3 S‘P(V(x—@)z+(U—’Q)2+22)d§d*q=
c© oo T 21 @
= S \ ‘(1/~_2:;“/‘2—+55)d<d’f‘ = S 'S g:(]/rz_zJ,— o*)ndpdf =

o —on 00
o

= 2=S ¢ (V2% + 0% pdo
b

Or, setting v 22 + pZ = ¢, we obtain

B(z):2zg ¢(©)CdC (16)
From this, we get i
(r)= — 5= 20 (17)

Now 1f we take advantage of expression (15), obtained for the one-
dimensional case, the formula based or. (17) for radiation absorbed in the
case of a point source 1is

oo
1 1 d by u~tarctgu
"(r) TR Y {kci.\ 1 —outarctigu cos kru du (18)
i

We transform this expression. Using the inverse Fourier transforma-

tion as applied to (14), we obtain

é& (% arc Lgu\) cos hru == — Li(—|krj) (19)
In this case
2 (r) = — J; ._(% {/.a /‘1—_CS '1: are teu cos kru du} = (20)
ke d Fil k e d [yt ds] = en
C ey g b R AL G'E?fﬁf[ﬁ s S] = r

kr

Fquation (18) for ¢(r) may be transformed in the following manner:
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-2 2
d ks. { [1—61‘——11';5-“——] cos kru du}

—oultarctgu

(L arc tg u\ cos kru du 4-

S8
op/*g

As a result, allowing for (20), we obtain

o
—hkr )
€e 1 d ke cu~?arctg?u
? (r) =k 4mrt | r dr [Zn‘ g 1—oularctgu cos kru du] -
k ge— kT ek? 1 ¢ ou-larc ta®u in krud (21)
= 4qmr? 272 r ) 1T —ou-tarc tg u S fru au

0

In this formula ¢ is the strength of the source of radiation, which
can be measured, for example, in calories per second.

The form of this expression makes it possible to establish the effect
of scattering. The first term in (21) corresponds to absorption where
scattering is absent, and the second term allows for its effect.

4. We derive the intensity of the halo formed around a point source.
We consider point A located at a distance R from the source. We construct
a cone with solid angle d . Its vertex is at point A, and its axis, with
the radius from the source to point A, forms an angle equal to a.

We isolate an element located at a distance p from point A, the volume
of which is equal to p?dpdQ. The distance of this element from the
source of radiation is designated by r. In this case, the radiation reach-
ing point A from a direction forming an angle a with the radius is de-
termined in the following form:

g e—l{p
J (R, a) dQ:S 5 (r) o $°dp dQ2
1]

Since r = vV p? — 2pR cos a + R?, the expression for J(R, a) can be

expressed in the fom

J(R,0) ==\ ¢ (VP ZcosapR + R e~edp (22)

)

Substituting (21) in this expression, we obtain

O’ . (.\p(_AV p-—é(()ba’/f+1‘)) e—he [
J(R, ) == \ Zeosas R It: e
O

on
ok (° “dare tg? k 2 — '
tegm | qromaes g, | Sl —2es A ) g, (23)
—oulurclgu ; Ve —2cosaplt - It
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We note that the first of these integrals can be expressed through an
integral -exponential function with a complex argument.

The current gq(R) falling from the direction of the source on an area
nommal to the radius is made up of radiation coming directly from the
source and of radiation coming from the halo. In order to find the second-

ary component, it is necessary to integrate the current falling on the
area from different directions,

On the basis of (1) and (23) for this quantity, we obtain the follow-
ing expression
k l/,"r: . )

ge kR . ok { exp(—kVp?— 2cosapR + R?) __,
q(R) =g T x nsnnZada[4—nS T % cos B § I e—*edp 4

0 0
o

[~
N 1 2 * gin (k T __ z
+ _?sk out arc tgte g, {\ sin (Lu Vet —2cosapR + R?) o—ko dp}]
2n* y 1 —oularctgu A Vet—2cosapR 4 R®

0

U

This expression can be transformed as follows:

—~kR e ®

k . exp(—kVp*— 2cosapR + R?) _
q(R)=‘f1fT1‘g?+ ecT \ sm2ada[g L1 S — 008 ap &+ I8 ) ¢ "de]+
0

0
2 ¢ utarctg ¢ sin (ku V3i—2ros apR T )
o?k? (. utarctgiu * sin (ku ¥ p?— 2c08 asR + R:
T & szada[gi—cu"af“g“du\ ¥V ¢*—2cosapR + R?

e—"Pdp]

0 0

(24)

We introduce the dimensionless quantities 6 = kR and n = p/R. There-
upon (24) can be transformed into the final form:

H  ———————
e % —6V n—scosanti

] . N
g(R)=-¢ -4—;? {1 + 2mafied & sina cosa da [x %T:m e—""d'q] +

0 1]
1
e © —arctgiudu T . Voi—3cos an = 1)
+ 4o%6%® S sina cos a da [g - = \s’“‘l’;"z_’l?z“";"’i; 1) e—°”d~q]}
b o 1- —arctgu § ' — écos an +

(29)
When scattering is absent, then ¢ = 0, and we obtain the elementary

formula. In an approximate computation of scattering, where the coeffi-

cient 0 is amall, the only significant terms are the first two in the
brackets.



A point source of luminous radiation in a scattering mediua 435

BIBLIOGRAPHY

1. Ambartsumian, V.A., A point source of light in a turbid medium.
Bulletin of the Erevan Astronomical Observatory No. 6, 1945,

2, Glasstone, S. and Edlund, M., The Elements of Nuclear Reactor Theory.
(Listed in a translation published in Moscow, 1954, entitled Osnovy
teorii iadernykh reaktorov,)

3. Chandrasekhar, S., Transmission of radiant energy. (Referred to in
translation as Perenos luchistoi energiti, Moscow, 1953.)

Translated by A.R.



